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Abstract. The explicit semiclassical treatment of logarithmic perturbation theory for the
nonrelativistic bound states problem is developed. Based upon ¯h-expansions and suitable
quantization conditions a new procedure for deriving perturbation expansions for the one-
dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach,
new handy recursion formulae with the same simple form both for ground and excited states have
been obtained. As an example, the perturbation expansions for the energy eigenvalues of the
harmonic oscillator perturbed byλx6 are considered.

1. Introduction

Logarithmic perturbation theory [1–8] is one of the principal approximation techniques in
theoretical and mathematical physics. Within the framework of this theory, the conventional
way to solve a quantum-mechanical bound-state problem consists in changing from the
wavefunction to its logarithmic derivative and converting the time-independent Schrödinger
equation into the nonlinear Riccati equation. Such a procedure leads to handy recursion
relations in the case of ground states, but becomes extremely cumbersome in the description
of radial excitations when nodes of wavefunctions are taken into account. Although several
attempts have been made to improve the method in the latter case [9–11], they have not resulted
in a desirable simple algorithm.

On the other hand, it is well known, that the radial quantum number,n, most conveniently
and naturally is introduced into consideration by means of quantization conditions, as in the
Wentzel–Kramers–Brillouin (WKB) approximation [12–14]. However, the WKB approach is
more suitable for obtaining energy eigenvalues in the limiting case of large quantum numbers,
whereas the perturbation theory deals with low-lying levels. Usually, the perturbation results
are obtained within the framework of the WKB method by recasting the WKB expansions
[15–19].

The objective of this paper is to develop an explicit semiclassical treatment of logarithmic
perturbation theory and to describe a straightforward semiclassical procedure for obtaining
the perturbation corrections through handy recursion formulae, having the same form both for
ground and excited states.

For the sake of simplicity, we restrict ourselves to the consideration of the bound-state
problem for the one-dimensional anharmonic oscillator. The generalization to the three-
dimensional problem requires including the quantization conditions for orbital momentum
and will be published elsewhere.
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2. Method

The system to be treated is described by the Schrödinger equation

− h̄
2

2m
U ′′(x) + V (x)U(x) = E U(x) (1)

where the potential function,V (x), has a simple minimum and hence can be given by the
expression

V (x) = 1
2mω

2x2 +
∑
i>1

fix
i+2. (2)

With changing the scale of the variable,x → √
h̄ x, it becomes obvious that the

coupling constants,fi , appear in common with powers of Planck’s constant, ¯h. Therefore, the
perturbation series must be semiclassical ¯h-expansions, too. Although well known in the folk
wisdom of theoretical physics, this assertion was, nevertheless, proved not so long ago [20]. It
has been argued that the energy eigenvalues under consideration should be concentrated near
the minimum of the potential and should behave as

E = h̄ω(n + 1
2

)
+
∑
i>2

Ei(ω, n) h̄
i . (3)

To our knowledge, there are only a few procedures for computing the coefficientsEi(ω, n).
They involve, in particular, applying the methods of the comparison equation [21] and complex
‘sprout’ [22]; an analytic continuation in the ¯h-plane [23]; various approaches within the
framework of the WKB approximation [15–19]; quantization using the methods of classical
mechanics [17, 24]; and, lastly, expansions in the ¯h1/2-series [25]. However, all of these
methods have some disadvantages.

Here we propose a new, simpler and more straightforward semiclassical technique. Being
explicitly opposed to the WKB approach, it is based on different quantization conditions which
are more appropriate for describing the solution of the bound-state problem in the vicinity of
a potential minimum.

Following usual practice, we apply the substitution,C(x) = h̄U ′(x)/U(x), accepted
in the logarithmic perturbation theory and go over from the Schrödinger equation (1) to the
Riccati equation

h̄C ′(x) +C2(x) = 2m[V (x)− E]. (4)

We attempt to solve it in a semiclassical manner with series expansions in the Planck constant

E =
∞∑
k=0

Ekh̄
k C(x) =

∞∑
k=0

Ck(x) h̄
k (5)

that result in the system

C2
0 = 2m[V (x)− E0]

C ′0 + 2C0(x) C1(x) = −2mE1

...

C ′k−1(x) +
k∑
i=0

Ci(x) Ck−i (x) = −2mEk.

(6)

In the case of ground states, this system coincides with one derived by means of the
standard technique and can be solved straightforwardly. However, complications of the
logarithmic perturbation theory arise in the description of radial excitations when the nodes of
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wavefunctions are included in some separate factor. We intend to circumvent these difficulties
by making use of the quantization conditions. The matter of the latter consists in applying
the principle of argument, known from the analysis of complex variables, to the logarithmic
derivative,C(x).

Since the wavefunction of thenth radially excited state hasn real zeros we have

1

2π i

∮
C(x) dx = 1

2π i

∞∑
k=0

h̄k
∮
Ck(x) dx = h̄n. (7)

There is, however, one important point to note. In the WKB approach, this condition is
supplemented by the following rule of achieving a classical limit:

h̄→ 0 n→∞ h̄n = constant (8)

accompanied by the equality of the quantum energy to the classical one.
In contrast to this, our method, dealing with low-lying states and being complementary to

the WKB approach, involves the alternative possibility

h̄→ 0 n = constant h̄n→ 0 (9)

which was formerly applied in deriving coefficients of the 1/N expansions [26–29]. In the
limiting case, as ¯h → 0, a particle is now lowered to the bottom of a potential well and its
classical energy becomesEcl = minV (x), which equals zero in our case.

Thus, in view of the rule (9), the quantization conditions (7) become

1

2π i

∮
C1(x) dx = n 1

2π i

∮
Ck(x) dx = 0 k > 1. (10)

A further application of the theorem of residues to the explicit form of functionsCk(x)

easily solves the problem of taking into account nodes of the wavefunctions.

3. Recursion formulae

Let us consider the system (6) and investigate the behaviour of the functionsCk(x). From the
first equation it is seen that

C0(x) = −[2mV (x)]1/2 = −mωx
(

1 +
2

mω2

∑
i>1

fix
i

)1/2

= x
∞∑
i=0

C0
i x

i (11)

where the minus sign is chosen from boundary conditions, and coefficientsC0
i are defined by

parameters of the potential as

C0
0 = −mω C0

i =
1

2mω

( i−1∑
p=1

C0
pC

0
i−p − 2mfi

)
i > 1. (12)

Because the pointx = 0 is a simple zero for the functionC0(x), the functionCk(x) has a pole
of the order of(2k − 1) at this point and consequently can be represented by a Laurent series

Ck(x) = x1−2k
∞∑
i=0

Cki x
i k > 1. (13)

Then, according to the theorem of residues, the quantization conditions (10), expressed
in terms of the Laurent series coefficients, take an especially simple form

Ck2k−2 = nδ1,k (14)

where the symbolδ1,k is the Kronecker delta.
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Substituting the expansions (11) and (13) into (6) and equating coefficients of equal powers
of x, we derive

(3− 2k + i)Ck−1
i +

k∑
j=0

i∑
p=0

CjpC
k−j
i−p = −2mEkδi,2k−2. (15)

Sorting out the case ofi 6= 2k − 2 yields the recursion relation for obtaining the coefficients
Cki :

Cki = −
1

2C0
0

[
(3− 2k + i)Ck−1

i +
k−1∑
j=1

i∑
p=0

CjpC
k−j
i−p + 2

i∑
p=1

C0
pC

k
i−p

]
(16)

whereas puttingi = 2k − 2 we would find the recursion formula for the energy eigenvalues

2mEk = −Ck−1
2k−2 −

k∑
j=0

2k−2∑
p=0

CjpC
k−j
2k−2−p. (17)

Thus, equations (16) and (17) determine coefficients of perturbation expansions of energy
eigenvalues and eigenfunctions in the same simple form both for the ground and excited states.

It should be noted that just conditions (9), represented in the form (14) simplify the
consideration of the perturbation theory by means of semiclassical expansions. It becomes
more evident under comparison of our technique with the rescaled version of the WKB approach
[17–19], where the order of the energy is taken into account by the equalityE = h̄ε. In this
case, the coefficientsCk(ε, x) in equation (7) have poles, too. The WKB quantization condition
(8) then reads as

∞∑
k=0

h̄k−1 ResCk(ε, x) = n (18)

with the residues being polynomial with respect toε. By truncating the series in the left-hand
side we arrive at the equation for determination of approximations to the energy eigenvalues
ε, and only after subsequent re-expanding, can we restore the results of perturbation theory
[17–19].

4. Discussion and examples

From equation (17) it is readily seen that for the energy eigenvalues, whenk = 1, we
immediately have the oscillator approximation

E1 = ω
(
n + 1

2

)
(19)

and withk = 2 one obtains the form familiar from standard textbooks [15]

E2 = − 15f 2
1

4m3ω4

(
n2 + n + 11

30

)
+

3f2

2m2ω2

(
n2 + n + 1

2

)
. (20)

It is easy to demonstrate that in the case of the harmonic oscillator our technique restores
the exact solution for the wavefunctions as well.

Putting, for simplicity,h̄ = m = ω = 1, from equations (12), (13) and (16) we find

C0(x) = −x Ck(x) = dkx1−2k k > 0 (21)

where

2dk = (3− 2k)dk−1 +
k−1∑
j=1

djdk−j k > 1

d1 = n.
(22)
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Carrying out the integration of the functionC0(x) we obtain the exponential factor of the
eigenfunction. Its remaining part is a polynomial that satisfies the equation

P ′n/Pn =
∞∑
k=1

dkx
1−2k (23)

and, consequently, has the form

Pn(x) = xσ
m0∑
i=0

aix
2i σ = 0 or 1 n = 2m0 + σ. (24)

On the basis of equation (23), the polynomial coefficients,ai , are determined by the system

(n− 2m− σ)am + d2am+1 + · · · + dm0−m+1am0 = 0. (25)

The combination of these equations, multiplied by a suitabledj with a view to taking into
account equation (22), arrives at the following relation between two consecutive coefficients:

am = −am+1
(2m + σ + 2)(2m + σ + 1)

4(m0 −m) (26)

that is the recursion formula for the Hermite polynomials (see, for instance [30]).
And at last, as an example, we consider the anharmonic oscillator with the potential

V (x) = 1
2x

2 + 1
2λx

6. (27)

Though this oscillator is widely discussed in the scientific literature [31–33], the analytical
expressions for the perturbation expansions of energy eigenvalues presented in [31] are
incorrect. The correct expansion coefficients obtained by means of formulae (16) and (17)
have the form
E1 = n + 1

2

E3 = 5λ2−4
(
4n3 + 6n2 + 8n + 3

)
E5 = −λ22−8

(
1572n5 + 3930n4 + 12 220n3 + 14 400n2 + 11 528n + 3495

)
E7 = 5λ32−11

(
23 592n7 + 82 572n6 + 418 236n5 + 839 160n4 + 1 523 968n3

+1 488 078n2 + 939 884n + 247 935
)

E9 = −λ42−16
(
45 804 660n9 + 206 120 970n8 + 1 471 569 960n7 + 4 188 597 000n6

+12 317 818 548n5 + 20 804 002 800n4 + 29 394 281 120n3

+25 244 303 400n2 + 13 898 196 592n + 3 342 323 355
)

E11 = 5λ52−19
(
1 023 655 464n11 + 5 630 105 052n10 + 52 379 661 180n9

+193 482 687 420n8 + 801 071 289 576n7 + 1 940 241 040 920n6

+4 424 265 058 200n5 + 6 633 369 121 920n4 + 8 108 461 519 360n3

+6 378 900 376 878n2 + 3 214 574 914 460n + 725 076 383 025
)
.

(28)

In conclusion, a new useful technique for deriving results of the logarithmic perturbation
theory has been developed. Based upon the ¯h-expansions and suitable quantization conditions,
new handy recursion relations for solving the bound-state problem for an anharmonic oscillator
within the framework of the one-dimensional Schrödinger equation have been obtained.
Avoiding the disadvantages of the standard approach these formulae have the same simple form
both for ground and excited states and provide, in principle, the calculation of the perturbation
corrections up to an arbitrary order in the analytical or numerical form. The extension on the
three-dimensional case and the relativistic equations will be published elsewhere.

Acknowledgment

This work was supported in part by the International Soros Science Education Program (ISSEP)
under grant APU052102.



568 I V Dobrovolska and R S Tutik

References

[1] Polikanov V S 1967Zh. Eksp. Teor. Fiz.521326
[2] Polikanov V S 1975Teor. Mat. Fiz.24230
[3] Dolgov A D and Popov V S 1978Phys. Lett.B 79403
[4] Aharonov Y and Au C K 1979Phys. Rev.A 202245
[5] Turbiner A V 1984Usp. Fiz. Nauk14435
[6] Imbo T and Sukhatme U 1984Am. J. Phys.52140
[7] Rogers G M 1985J. Math. Phys.26567
[8] Fernandez F M and Castro E A 1987J. Phys. A: Math. Gen.205541
[9] Au C K, Chen K L, Chow C K, Cho C S and Young K 1991J. Phys. A: Math. Gen.243837

[10] Kim I-W and Sukhatme U P 1992J. Phys. A: Math. Gen.25L647
[11] Fernandez F M 1992Phys. Rev.A 451333
[12] Wentzel G 1926Z. Phys.38518
[13] Kramers H A 1926Z. Phys.39828
[14] Brillouin L 1926C. R. Acad. Sci., Paris18324
[15] Rubinovicz A 1968Quantum Mechanics(Warsaw: Elsevier)
[16] Walker G H 1974Phys. Lett.A 74170
[17] Slav’yanov S Yu 1990Asymptotic of Solutions for the One-Dimensional Schrödinger Equation(Leningrad:

Leningrad University Press) (in Russian)
[18] Voros A 1989Phys. Rev.A 406814
[19] Delabaere E, Dillinger H and Pham F 1997J. Math. Phys.386126
[20] Simon B 1983Ann. Inst. H. Poincaŕe38295
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